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Abstract-A model is proposed for describing transfer across the interface of two independently stirred 
liquids. Independent stirring was considered to effect different periods of surface renewal in the two 
phases. A scheme is proposed for evaluating a time averaged value of the flux crossing the interface, 
and an analytical solution is obtained for the simplest case of nonequal surface renewal times, i.e. 
when the surface renewal time in one phase is twice that in the other. 

It is shown, that even for this simple case, the overall resistance to transfer can no longer be 
described as “composed of two linearly additive terms each containing parameters relating to only 
one of the phases”. The simplest schematic representation would be: overall resistance = resistance 

in one phase + resistance in the other phase + an interaction parameter. 

NOMENCLATURE 

A,(x), A&x), particular integrals of equations 
(9~) and (10~) respectively; 

C,, C,, CS, C,, integration constants; 

D = -& differential operator ; 

kl, kz, thermal conductivities in phases 
1 and 2 respectively; 

1, m, n, integers ; 

klK1+ kz-’ ~~--_--_-_ 
kgc-? -+ k2K2-i 

(Fl _ ry2); 

1 
N = 4k,tl; 

B, see definition of TI and Tz;; 

(l=“. 
K’ 

Q(t)> instantaneous flux crossing the 
interface; 

Q,, time averaged value of flux for 
period 7; 

.Yl, Yz, uniform bulk temperatures in 
phases 1 and 2 respectively; 

T,, T,, instantaneous temperatures in 
phases 1 and 2; 

L.Y(T,) = Tl = J,” e-pi . Tl dt; 
4 time; 
h, t2, time intervals ; 

X, distance from the interface; 

% K2, thermal diffusivities in phases 1 
and 2. 

INTRODUCTION 
IN A PREVIOUS paper [l] a model was proposed 
for the transfer of heat or mass at the bubble- 
stirred interface of two immiscible liquids. Two 
immiscible liquids phases (1) and (2) were con- 
sidered, extending from x = O(+) to x = co 
and x = O,_, to x = - co respectively. Values 
were assigned to the respective bulk tempera- 
tures YI, Y2 thermal diffusivities, K~, K2 and 
thermal conductivities kl, k, of the two phases. 
Finally, the instantaneous temperatures near the 
surface were given as Tl and T, respectively. 

It was considered that when a bubble crossed 
the interface it destroyed instantaneously the 
temperature gradients on both sides of the 
x = 0 plane. Thus at this instant Tl = .Yl for 
x > 0 and T, = F2 for x < 0. Then there exists 
unsteady state conduction from phase 1 to phase 
2 with a corresponding re-establishment of 
temperature gradients until the arrival of the 
next bubble when the whole cycle starts again. 
It was shown that such a system can be repre- 
sented by the two equations: 

ST, 1 aT, 
--- for x > 0 

3x2 = K, at’ (1) 

833 
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and 

a2 T, 1 aT, 

8x2 
-=k,z, forx<O (2) 

connected by the following boundary conditions. 

Tl = T2 at x = 0, t > 0 (3) 
r 

k, g: = k, 7; at x = 0, t > 0 (4) 

Tl = .Fl at t = 0, for x > 0 (5) 

Tz = Y-Z at t = 0, for x < 0 (6) 

T, = .Fl at x = cc’, for t 3 0 (7) 

T,=Y2 atx= - co,fort >0.(8) 

The solution of equations (1) and (2) was quoted 
from Carslaw and Jaeger [2] as 

and 

T2 - y2 E.Z ..__kl”~‘-___ x (y-, _ y2) 

klq4 + k2u2-h 

erfc .k!-- (10) 
22/(%t)’ 

Expressions were also derived for the instan- 
taneous flux [Q(t)] 

and time averaged flux Qte for the period te, 
i.e. the time interval between the arrival of two 
successive bubbles. 

Qte = ; 
s 

; Q(t) dt (12) 

and finally the overall heat-transfer coefficient 
was given as 

Qte 
h = yy-r2 = 

% k2K2-h 

d\/(r’$te) x &K+ + k2/c2-i 
(13) 

rearranging equation (I I) we have 

i.e. the overall resistance to transfer is composed 
of two linearly additive terms each containing 
parameters relating to only one of the phases. 
In other words: overall resistance = resistance 
in phase 1 + resistance in phase 2. 

MODEL FOR INDEPENDENT STIRRING 

It is of interest to consider the case when the 
two phases are stirred independently. 

Similarly to the problem involving the bubble- 
stirred interface, consider two immiscible liquid 
phases (1) and (2) extending from x = O(.+, to 
x = cc and x = O,_, to x = - cc respectively. 
Assign values to the bulk temperatures YI, Y2 
thermal conductivities k,, k,, thermal diffusiv- 
ities K1, K2 where the subscripts 1 and 2 refer to 
the appropriate phases. Consider an idealized 
case when due to stirring at different rates, the 
surface (this is deemed to include all material 
in the vicinity of the surface where the tempera- 
ture is not equal to that of the bulk) of phase 1 
is renewed (i.e. replaced with material from the 
bulk) at time intervals t,, 2t,, 3t,. . . nt, and that 
of phase 2 at intervals tz, 2t,, 3t, . . . mt,.* 

Consider a cycle of length T, starting at a 
time t = 0 when the renewal of surfaces coincides 
in both phases, extending to a time t =-- T when 
the same situation is reproduced. It is evident 
that T must be the smallest common multiple 
of t, and tz. 

Thus at t = 0 we have: (Fig. 1) 

T, = .FI for x > 0 

and 

Tz == .YX for x < 0. 

(5) 

(6) 

At 0 < t < t, we have(Fig. 2) 

Tl = 4,(x, t>l 
T2 = 42(X, th 

(15) 

* It is noted that an additional assumption is implicit 
in the above formulation, namely that it is possible to 
renew the surface of one phase without affecting the other 
phase, i.e. the existence of “perfect slip” at the interface. 
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T 

I- 
the fIux Q(t) has been defined in equation (11). 

The time averaged value of the flux for a 
cycle with a period 7 is given below : 

7;=r, 

1 
--cX 0 x4-F 

FIG. 1. 

At t = t, (Fig. 3) 

1 (16) 

If 1 < (t,/t,) < 2; at t = tz (Fig. 4) (17) 

At t = t,(+, we have 

TI = 4&, 03 
T, = Mx, t)z I- (19) 

and in general, for 0 < t < 7, t # It,, t # It, 
where It = 1,2. . . 

TI = bdx, On 
Tz = Mx, t)m. 

(20) 
--i 

I 

--r---x 0 X--r+ 

FIG. 3. 
The problem is to evaluate point values and time 
averaged values of the flux crossing the x = 0 
plane during the time interval t = 0 to t = 7. 

The function describing the point value of 

s s--all-??a 5 

+ ax z=iJ 
V,(x, thn+nl dx (21) 

0 

i.e. Q, is the sum of integral mean fluxes between 
singularities. An expression similar to (21) can 
be derived in terms of &(x, t). 

Equation (19) is subject to the restriction 
contained in (15). The same technique can be 
applied for evaluating Q, for the more general 
case (i.e. for an arbitrary value of the t,/tz ratio) 
although the resulting expressions would be 
considerably more complex. 

EVALUATION OF THE FUNCTIONS 4(x, t) 

In order to compute values for Q, the functions 
4,(x, t)n and &(x, t)nz must be determined. This 
can be done, at least for a simple case, by solving 
equations (1) and (2) for the appropriate 
boundary conditions. 

For the 0 < t < tl region the results are 
available from work on the bubble stirred 
interface [l]. 

i.e. h 
Q&> = d(,+) 

--Cx 0 X--,-h kZKZ- ) 

’ klKl+ + kzKz-h 
v-1 - FL?) (22) 

FIG. 2. 
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--cX 0 x-t 

FIG. 4. 

for the period t, c t < t2 equations (1) and (2) 
have to be solved with the following boundary 
conditions : 

T, : F2, at x = 0 t>O (3) 

k, 
i3T, 

= k, t:, at .X =: 0 t > 0 (4) 
ax 

Tl = F7,, att==O 

and T2 F= .Fs 

(23) 

The solution of equations (1) and (2) with the 
above boundary conditions can be obtained for 
the flux [i.e. k(8T,/3x),=,] by using Laplace 
transform. Details of the calculations are given 
in the Appendix. After some computation we 
have : 

(24) 

Thus the mean value of the flux over the interval 
(t2 -- tJ is given as : 

I J’ 
trt1 

Qw-tl) = __- 
6-h II 

Q(z)(t) dt 

and the mean value of the flux over the interval 
t, = t, + (t,, - t,) is: 

Qt2 =: t; [/1’ Q&j dt+ [;“-t” Qz(t) dtl 

x [d(td + x44 - tl) - d(tJl )i . (25) 

It can be seen that if tl = t2 the expression in the 
{} brackets is zero and equation (23) reduces to 
that derived for the bubble stirred interface. 

If we consider the simplest case* of nonequal 
surface renewal times, namely t2 :: 2t,, then 
equation (23) gives the value for the mean flux 
over the complete cycle: 

7 -- t, + (12 - t& 

Thus we have: 

-- - 

It is seen that the overall resistance to transfer can 
no longer be described as “composed of two 
linearly additive terms each containing para- 
meters relating to only one of the phases”. 

The simplest schematic representation would 
be: 

overall resistance = resistance in one phase 
+ resistance in the other phase -I-. an 
interaction parameter. 

~~ ___.. 
* It is shown in the Appendix that analytical treatment 

of more complex cases would be extremely difficult; and 
numerical methods would be required to obtain a solu- 
tion. 
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It can also be seen that if klK1-* $ kzfcz-t or 
kzic-* 9 klul-t the interaction parameter 
vanishes and the overall transfer rate can be 
expressed in terms of properties relating to 
phase 2 or phase 1, respectively. 

DISCUSSION 

A model has been proposed to describe the 
transfer across the interface of two independ- 
ently stirred immiscible liquids. Uniform bulk 
properties were assumed, and the effect of 
stirring was considered to renew the surface of 
phase 1 at time intervals t,, 2t, . . . . . . ntl and 
that of phase 2 at intervals t,, 2t, . . . . . . nt,. 
Transfer was considered to take place by 
unsteady state conduction during the time 
interval between the singularities (i.e. surface 
renewal of phase 1 or 2). 

A scheme was suggested for evaluating a time 
averaged value of the flux crossing the interface 
during a cycle, a cycle being defined as the time 
interval between two successive points when the 
surface renewal times in the two phases coincide. 
In order to obtain the temperature distribution 
in the two phases and values for the flux, 
differential equations (1) and (2) had to be solved 
for successive time intervals between singular- 
ities; the boundary conditions relating to 
continuity, i.e. (3) and (4) remain the same for 
each time interval, the expressions giving the 
temperature distribution (i.e. the boundary 
condition relating to t = 0, t = tl, t = tz, etc.) 
are obtained from the solution for the previous 
time interval. 

Thus at t = 0 we have T1 = Y1 (i.e. constant) 
and T, = Fz (i.e. constant). At t = t+) we 
have 

T1 = M-G t) and T, = Y&(X, t)l (15) 

where equations (13) are naturally the solutions 
of equations (1) and (2) under the above bound- 
ary conditions. And at t = t,(+, we have TX = 
Fl and Tz = q&(x, t)l which are the new bound- 
ary conditions for equations (1) and (2) valid 
during the tz -- t, time interval. 

A similar procedure can be adopted for 
successive time intervals. 

With regard to the actual calculations, 
functions 4,(x, t)l and &(x, t)l are available from 

previous work, thus the flux for the t, - 0 time 
interval is readily evaluated. 

It is more difficult to obtain a solution for 
the interval tz - t,, because of the complex 
boundary conditions. [&(x, t)l is an error 
function.] As shown in the Appendix, Laplace 
transform was used, and although the expression 
for the temperature distribution is not readily 
inverted the inverse transform describing the 
flux can be found in tables. Thus it was possible 
to evaluate the time averaged value of the flux 
for a cycle involving the simplest case of non- 
equal surface renewal times, i.e. when t, = 2t,. 
It appears that an analytical solution for a more 
complex case would be rather difficult to obtain; 
such cases would be best solved using numerical 
methods. 

However, interesting conclusions can be drawn 
from the analytical expression derived for this 
simplest case of non-equal surface renewal 
times. The overall resistance to transfer can no 
longer be described as “composed of two 
linearly additive terms each containing para- 
meters relating to only one of the phases”. 

There exists an interaction parameter which 
contains factors relating to the physical pro- 
perties of both phases. 

It has also been shown that the physical 
properties of one phase can be such that the 
overall rate of the process is limited by that 
occurring in one phase only. In this case the 
interaction parameter vanishes and the resultant 
expression for the transfer rate reduces to an 
expression analogous to that given by Higbie [3] 
or Danckwerts [4]. 

Previous theories when describing interphase 
transfer postulated constant temperature or 
concentration at the interface. The model 
proposed in this paper does not contain this 
arbitrary restriction. It can be seen in the 
Appendix that for the nonequal surface renewal 
times in the two phases the temperature at x = 0 
is no longer constant, but is a function of time. 
The time dependence of the interface temperature 
is likely reason for the nonadditivity of resist- 
ances. 

The general difficulty experienced by many 
investigators when attempting to correlate mass- 
transfer results obtained for different systems 
may well be associated with the fact that the 
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possible effects of an interaction parameter had 
not been taken into account. 

It is of interest to note that liquid-liquid 
extraction results using a wide variety of materials 
were satisfactorily correlated by Lewis [5, 61 
who employed an expression which involved 
three terms, one relating to one phase, the second 
to the other, and the third being essentially an 
interaction parameter. 

This poses the question whether similar 
correlations should not be necessary for the 
accurate description of turbulent heat exchange 
between two fluids, when the “individual 
coefficients” are comparable in magnitude. It 
would appear that only a carefully conducted 
experimental investigation could give a definite 
answer. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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To solve 
APPENDIX 

i32T, 1 bT, 

8x2 K1 c’t 
2 x>o (IA) 

and 

@T, 1 ST, 

- K2 at’ ax2 
xto (2.4) 

with the following boundary conditions : 

T,=F-, atx=O, t>O (34 
r 

k, i: = k, 7: at x = 0, t > 0 (4~) 

and 

T, = Y2 

T,=F-, att=O (5A) 

define : 

and 

Apply Laplace transforms to equations (IA) and 
(2A) : 

and 

d”T2 1x1 yz __ - 
dx2 

q$T2 + A4 erfc 7R + -i2 = 0 (10~) 

where 

q2 s”: 
K 

(1 iA) 

Equations @A) and (4~) transform to give: 

Tl = T2, atx=O (12A) 

and 

k,!$k,;~ at x x 0. (134 

The solution of equation (9~) is given as : 

?+I = c1 e-glz + cs eQlz + A,(x) (14A) 

where C, and C, are constants and A(x) is a 
particular integral. 

As Tl is finite when x + ccj, C, = 0; further- 
more it can be shown that 

- 

A,(x) = ;zqj. 
1 

Therefore the solution of (9A) is: 

(15A) 



TRANSFER AT INTERFACE OF TWO INDEPENDENTLY STIRRED LlQUIDS 839 

The solution of (10~) is given as : 

T, = C3 e-912 + A,(x). (17A) 

The particular integral A,(x) can be determined 
as follows : 

A@) 

(184 

Substitution of the boundary conditions con- 
tained in equations (12~) and (13~) into equations 
(16~) and (21~) facilitates evaluation of constants 
C, and C,. 

where D is the differential operator. Thus finally we have: 
Resolving into partial fractions we have: c, = 

M 
-z _ y1 - r2 ____~ 

q2 

exp (q2N/4) erfc ‘22/N _ 1 
2 2 I P 

1 + 341 
hq, 

A,(X) = - & e-@Xl eQz M erfc $$ dx 
2 

1 

+ 2g eg9z J 1x1 
2 

e-grx Merfc m dx _t zj . 

(19A) 

The integrals can be evaluated by integration 
in parts. After some computation we have: 

A,(X) = $2 - M PI 
42’ 

erfc TN - exp (q;N/4) 

[-te-@xerfc(-$$- q) 

+ 4 egz erfC 
1x1 42/N 

z/N -/- -2- . (2oA) 

Thus the solution of equation (10~) is given as : 

(224 
c, = 

M qdN Tz exp (qzN/4) erfc -2- - 1 - I LT,-f12 
P 

1+;+ 
2 2 

9-* - cT2 M 
+ p +:. (23~) 

Values of C, and C, thus obtained can be sub- 
stituted back into equations (16~) and (21~). To 
form the inverse transform of the resultant 
expression would require considerable manipula- 
tion and probably the use of contour integrals. 

However, the expression giving the inverse transform of the flux: i.e. 

can be evaluated without difficulty [7]. Thus we have: 

and 

M q;N M Fl- F2 
2 w (qZN/4) erfc 4 - 4,’ - 

3: = e-412 _ _ P 

hq, 

“GJ 

(24~) 

1 M M 

I=0 = ___ 4,’ 41 
rz -- klq, -- 

l+k,q, 

q2” q1 fw (qiN/4) x erfc 2 
q&N + Fl- I Pqr’ ’ 

(254 
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Noting that M, N and q were defined in equations (7~), (8~) and (11~) respectively, substituting 
back these original values and finally forming the inverse transforms using tables, we obtain : 

It can be shown that, after some manipulation, equation (26~) is identical to equation (23) in the 
text. 

R&urn&Cet article decrit un mod&le pour les &changes A l’interface de deux liquides agitCs stparbment. 
On considkre que l’agitation est indkpendante si les pCriodes de renouvellement des surfaces sont dif- 
fkrentes pour les deux phases. On propose un schbme pour dkterminer une valeur, moyenne en fonction 
du temps, du flux qui traverse l’interface et on donne une solution analytique dans le cas t&s simple oh 

les temps de renouvellement des surfaces sont inkgaux, par exemple quand le temps de renouvellement 

d’une surface est deux fois celuide l’autre. 
On montre que, meme pour ce cas simple, la rirsistance totale g 1’8change ne peut plus se d&ire par 

“l’addition de deux termes 1inCaires contenant respectivement des parametres se rapportant unique- 
ment & chacune des phases”. La reprksentation schematique la plus simple serait: resistance totale :~ 

rCsistance de l’une des phases + rBsistance dans I’autre phase -t un paramktre d’interaction. 

Zusammenfassung-Zur Beschreibung von Austauschvorglngen an der Trennfllche zweier unabhPngig 
voneinander geriihrten Fliissigkeiten wird ein Model1 vorgeschlagen. Die unabhgngige Durchriihrung 
sol1 unterschiedliche Perioden der Oberfllchenerneuerung in den beiden Phasen bewirken. Nach einem 
vorgeschlagenen Schema ist der zeitliche Mittelwert des Flusses quer zur Trennfllche zu bestimmen und 
eine analytische LGsung 1Lsst sich fiir den einfachsten Fall ungleicher Oberfllchenerneuerungszeit 
erhalten, d.h. wenn die OberflIchenerneuerungszeit in der einen Phase zweimal so gross ist wie in der 
anderen. 

Es wird gezeigt, dass selbst fir diesen einfachen Fall der Gesamtwiderstand des Austausches nicht 
mehr als “zusammengesetzt aus zwei linear additiven Ausdriicken, von denen jeder nur die auf eine 

Phase bezogenen Parameter enthllt”beschriebenwerdenkann. Dieeinfachsteschematischewiedergabe 
wLre so: Gesamtwiderstand = Widerstand in einer Phase -F- Widerstand in der anderen Phase = 

Wechselwirkungsparameter. 

AaHoTaqu~--1lpeRnoltteHa nIofie.zb 0mfcaHkIn nepeIfoca qepea noBepxHocTb pa3zeJIa Atlyx 
oTaenbH0 nepeMemm3aeMbIx mH~~<ocTet. IIpegnonaranocb, YTn B pe3y;rbTaTe HeaasmcMmoro 
IIepeMeIIIPIBaHHn nOJIyqaIoTCH pa3JWIHbIe IIepllOfibI nOCCTaHOB~7eHRR IIOBepxrfOCTH B AByX 

(baaax. IIpen:IoweIia cxeMa paw@Ta cpenHer0 3HaqeHwf Bpewemf ZnR nOTOHa, npoxo~nmero 

qepe:f nonepxIfocTb pa3neza M nonyqeao aHazwrw4ecfioe pemeHcIe Wolff npocTetiluer0 cnysarf 

HeOAKHaKOBbIX IIeplIO~OB BpeMeHH BOCCTaHOBJIeHHff IIOBepXtfOCTH, T.e. HOrza BOCCTaIIOBAeHIIe 

IIORepXHOCTH B O&HOP @a3e B EBa pa3a Cioj?(bILIe YeM B ApyrOti. 

IIoI<aaaffo, ‘IT0 name ,7JnFI 3TOrO npocTor0 cnyqan, nonHoe cOnpoTmf.neffne neperfwy 

HeJIb:<fI 6OJIee OlII?CblBaTb IEaK GCOCTORqee PI3 XByX aflALITRBHbIX YJIeHOB, IFaltifibIti I43 ItOTOpbIS 

coxepwIT napaMeTpbI, 0THocflqnecff TonbKO H 0Jtfot Ii3 @tw. ~pOCTe~IfIIlM CxeziTwfecmIki 

ftpe~~cTasJre~fne~I mf.7meTcn: 1IozIHoe conpoTf4o;lewIe = conpoTmnneHm0 H Oz~oti 4a:fe + 

C,OnpOTEfBJIeHMe n apyroik @ase + IrapaMeTp B3aMMO~etiCTBMn. 


