Int. J. Heat Mass Transfer.

Vol. 6, pp. 833-840. Pergamon Press 1963

Printed in Great Britain.

NOTES ON THE TRANSFER AT THE INTERFACE OF TWO
INDEPENDENTLY STIRRED LIQUIDS

J. SZEKELY
Department of Metallurgy, Royal School of Mines, Imperial College, London

(Received 29 January 1963)

Abstract—A model is proposed for describing transfer across the interface of two independently stirred
liquids. Independent stirring was considered to effect different periods of surface renewal in the two

phases. A scheme is proposed for evaluating a time

averaged value of the flux crossing the interface,

and an analytical solution is obtained for the simplest case of nonequal surface renewal times, i.c.

when the surface renewal time in one phase is twic
It is shown, that even for this simple case, the

e that in the other.
overall resistance to transfer can no longer be

described as “composed of two linearly additive terms each containing parameters relating to only
one of the phases”. The simplest schematic representation would be: overall resistance = resistance
in one phase + resistance in the other phase 4 an interaction parameter.

NOMENCLATURE

Ay(x), Ay(x), particular integrals of equations
(9a) and (104) respectively;

C,, C,,C,, C,, integration constants;

d . .
D =- i differential operator;
ky, ko, thermal conductivities in phases
1 and 2 respectively;
1, m, n, integers;
fyrey H eyt
= %1___2 = (T1— )
kyry™h 4 Koy
1
N=—
4kt _
0, see definition of T, and T;;
_P.
q9=":
o), instantaneous flux crossing the
interface;
0., time averaged value of flux for
period 7;
T 15T o, uniform bulk temperatures in
phases 1 and 2 respectively;
Ty, T, instantaneous temperatures in

phases 1 and 2;
LTy = T,—= Qe ®t . T dt;
t, time;
t, by, time intervals;
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X, distance from the interface;

Ky K, thermal diffusivities in phases 1
and 2.
INTRODUCTION

IN A PREVIOUS paper [1] a model was proposed
for the transfer of heat or mass at the bubble-
stirred interface of two immiscible liquids. Two
immiscible liquids phases (1) and (2) were con-
sidered, extending from x =0, to x = ©
and x = 0_, to x = — oo respectively. Values
were assigned to the respective bulk tempera-
tures 7, J, thermal diffusivities, «;, «, and
thermal conduciivities k,, k, of the two phases.
Finally, the instantaneous temperatures near the
surface were given as 7 and T, respectively.

It was considered that when a bubble crossed
the interface it destroyed instantaneously the
temperature gradients on both sides of the
x = 0 plane. Thus at this instant 7, = 7, for
x > 0and T, = 7, for x < 0. Then there exists
unsteady state conduction from phase 1 to phase
2 with a corresponding re-establishment of
temperature gradients until the arrival of the
next bubble when the whole cycle starts again.
It was shown that such a system can be repre-
sented by the two equations:
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and

&1, 1 T,

g A for x < 0 (2)

connected by the following boundary conditions.

=T, atx =0,r>0 3)
kl%?zkg%%atx:o,t>0 “)
T,=9, att=0,forx>0 (5
T, =9, att=0,forx<0 (6
T,=7, atx=wx,fort>=0 (7)
T,=9, atx= — oo,fort > 0.(8)

The solution of equations (1) and (2) was quoted
from Carslaw and Jaeger [2] as

-1
Keppey =

T o g g
Tl ‘/2 kz"z_i + lel_i X (‘/1 ‘/2)
szgvé X
and
Ty Ty ATy — T )
2 S Il R I ! 2
| x|

Expressions were also derived for the instan-
taneous flux [Q()]

o) = ky (%:,r;)z ke (%ﬁ')

and time averaged flux Q,, for the period ¢,
i.e. the time interval between the arrival of two
successive bubbles.

(11)

(12)

1 [t
Qte - ?J Q(t) dt
eJo

and finally the overall heat-transfer coefficient
was given as

h— Qi 2k % karey™? i
T T =T, A(mwrte) ket kyeh

(13)
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rearranging equation (1 1) we have

2 1
TV V) V()

D R

h (14)

i.e. the overall resistance to transfer is composed
of two linearly additive terms each containing
parameters relating to only one of the phases.
In other words: overall resistance = resistance
in phase 1 -+ resistance in phase 2.

MODEL FOR INDEPENDENT STIRRING

It is of interest to consider the case when the
two phases are stirred independently.

Similarly to the problem involving the bubble-
stirred interface, consider two immiscible liquid
phases (1) and (2) extending from x =0, to
x=oo0and x = 0_, to x = — o0 respectively.
Assign values to the bulk temperatures 7, 7,
thermal conductivities k,, k,, thermal diffusiv-
ities «,, k, where the subscripts 1 and 2 refer to
the appropriate phases. Consider an idealized
case when due to stirring at different rates, the
surface (this is deemed to include all material
in the vicinity of the surface where the tempera-
ture is not equal to that of the bulk) of phase 1
is renewed (i.e. replaced with material from the
bulk) at time intervals ¢, 2¢;, 3¢, . . . n¢; and that
of phase 2 at intervals t,, 22, 3¢, . . . mt,.*

Consider a cycle of length =, starting at a
time ¢ = 0 when the renewal of surfaces coincides
in both phases, extending to a time ¢ == 7 when
the same situation is reproduced. It is evident
that = must be the smallest common multiple

of ¢, and #,.
Thus at ¢ = 0 we have: (Fig. 1)
T,=7, forx >0 (5)
and
Ty =7, for x < 0. (6)

At0 < t << t, we have (Fig. 2)

Ty = ¢y(x, th } (15)
T, = ¢o(x, th

* Tt is noted that an additional assumption is implicit
in the above formulation, namely that it is possible to
renew the surface of one phase without affecting the other
phase, i.e. the existence of “perfect slip” at the interface.
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7
7=7,
=3
——) [e] X —
FiG. 1.

At t =1, (Fig. 3)
T, =9,
Ty = dolx, 1)
at t = t, (Fig. 4)

Ty = ¢y(x, 1),
Ty= T

} (16)

(17

} (18)
T, = ¢y(x, 13

19
Ty = ¢y, 1), } (19)
and in general, for 0 <t <7, t £, t F# 1ty

where It = 1,2 . ..
}(20>

Ty = ¢y(x, Dn
T2 = ¢'2(x’ t)m'
The problem is to evaluate point values and time
averaged values of the flux crossing the x =0
plane during the time interval t =0 to t = 7.
The function describing the point value of

If 1 < (t/t) < 2;

At t = ty(,) we have

/HM‘_- -
5=¢,(x7), e
— —x 0 X—

FiGc. 2.
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the flux Q(¢) has been defined in equation (11).
The time averaged value of the flux for a
cycle with a period T is given below:

_k

t1
T JU é;;p

ta—t1 o
N R LE

0

o, o [p1(x, D,] dx

T-nti—miz b
+ J x [b1(x, Dmen] dx  (21)
0 =0

i.e. @, is the sum of integral mean fluxes between
singularities. An expression similar to (21) can
be derived in terms of ¢,(x, f).

Equation (19) is subject to the restriction
contained in (15). The same technique can be
applied for evaluating Q, for the more general
case (i.e. for an arbitrary value of the /1, ratio)
although the resulting expressions would be
considerably more complex.

N
Fic. 3.

EVALUATION OF THE FUNCTIONS ¢(x, 1)

In order to compute values for Q, the functions
b:(x, D) and ¢y(x, 1), must be determined. This
can be done, at least for a simple case, by solving
equations (1) and (2) for the appropriate
boundary conditions.

For the 0 < 7 < t; region the results are
available from work on the bubble stirred
interface [1].

k
ie. O = m

kegrey ™t
—3 (‘7-1 - ‘7-2)

x Feyrey ™t - keorey @2)
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T=gfx,

FiG. 4.

for the period 1, << t < 1, equations (1) and (2)
have to be solved with the following boundary
conditions:

T,=9, atx=0 t>0 3)
or,  eT,
kl ax_’ = k2 _5);’ at x = 0 t > 0 (4)
T,=9,, att =0
and T, = 7,
' o al g klkl—% X l

TOTT) e T T 2ty

(23)

The solution of equations (1) and (2) with the
above boundary conditions can be obtained for
the flux [i.e. k(6T/éx),_,] by using Laplace
transform. Details of the calculations are given
in the Appendix. After some computation we
have:

Qu) = k(Ty = T | o~ X
1 ! 1
RV Co ( LT ket S
et et
S L. w} (24)
/ {'\/(wt) Vie(e+)lf )

Thus the mean value of the flux over the interval
(t; — t,) is given as:

Qa1 =

1 ta—f1
J Qo) dr

I — hjo
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and the mean value of the flux over the interval
=1t + (ts — 1) is:

1 t1 ‘ (ta—t1)
Qty == — [J Oy(n) di+ J
0

t2 0

0:(0) dr}

AT, — T ) |
= ( i Y
firt ke
1
F V=)= |y X
S 4 Dt
Koyt v kg 00 ke

X V) A+ VIt — 1) — V(@)]J)- 25)

It can be seen that if ¢, =: f, the expression in the
{} brackets is zero and equation (23) reduces to
that derived for the bubble stirred interface.

If we consider the simplest case* of nonequal
surface renewal times, namely ¢, = 27, then
equation (23) gives the value for the mean flux
over the complete cycle:

Tyl — 1)

Thus we have:

o4t 1
Q=Jmy | 1 1
it T ey
1 2 — /2
0 ke T2)

SR TR
(26)

It is seen that the overall resistance to transfer can
no longer be described as “composed of two
linearly additive terms each containing para-
meters relating to only one of the phases”.
The simplest schematic representation would
be:
overall resistance = resistance in one phase
-+ resistance in the other phase -- an
interaction parameter.
" * It is shown in the Appendix iha't"aﬁal)‘;tiircal treatment
of more complex cases would be extremely difficult; and

numerical methods would be required to obtain a solu-
tion.
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It can also be seen that if kyx; ™% > kyo™? or
koxa~t > kyy~t  the interaction parameter
vanishes and the overall transfer rate can be
expressed in terms of properties relating to
phase 2 or phase 1, respectively.

DISCUSSION

A model has been proposed to describe the
transfer across the interface of two independ-
ently stirred immiscible liquids. Uniform bulk
properties were assumed, and the effect of
stirring was considered to renew the surface of
phase 1 at time intervals ¢, 2¢, . . . . .. nt; and
that of phase 2 at intervals #,, 2, . . . . .. nt,.
Transfer was considered to take place by
unsteady state conduction during the time
interval between the singularities (i.e. surface
renewal of phase | or 2).

A scheme was suggested for evaluating a time
averaged value of the flux crossing the interface
during a cycle, a cycle being defined as the time
interval between two successive points when the
surface renewal times in the two phases coincide.
In order to obtain the temperature distribution
in the two phases and values for the flux,
differential equations (1) and (2) had to be solved
for successive time intervals between singular-
ities; the boundary conditions relating to
continuity, i.e. (3) and (4) remain the same for
each time interval, the expressions giving the
temperature distribution (i.e. the boundary
condition relating to t =0, t = t;, 1 = 1,, etc.)
are obtained from the solution for the previous
time interval.

Thus at ¢t = 0 we have T, = . (i.e. constant)
and T, =, (i.e. constant). At =1t , we
have

Ty = $y(x, 1) and Ty = dy(x, 1), (15)
where equations (13) are naturally the solutions
of equations (1) and (2) under the above bound-
ary conditions. And at ¢ = t,(,, we have T; =
Z1and T, = y(x, 1), which are the new bound-
ary conditions for equations (1) and (2) valid
during the ¢, — ¢, time interval.

A similar procedure can be adopted for
successive time intervals.

With regard to the actual calculations,
functions ¢,(x, t), and ¢,(x, 1), are available from
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previous work, thus the flux for the ¢, — 0 time
interval is readily evaluated.

It is more difficult to obtain a solution for
the interval t, — ¢, because of the complex
boundary conditions. [@s(x, ), is an error
function.] As shown in the Appendix, Laplace
transform was used, and although the expression
for the temperature distribution is not readily
inverted the inverse transform describing the
flux can be found in tables. Thus it was possible
to evaluate the time averaged value of the flux
for a cycle involving the simplest case of non-
equal surface renewal times, i.e. when f, = 24,.
It appears that an analytical solution for a more
complex case would be rather difficult to obtain;
such cases would be best solved using numerical
methods.

However, interesting conclusions can be drawn
from the analytical expression derived for this
simplest case of non-equal surface renewal
times. The overall resistance to transfer can no
longer be described as ‘“composed of two
linearly additive terms each containing para-
meters relating to only one of the phases”.

There exists an interaction parameter which
contains factors relating to the physical pro-
perties of both phases.

It has also been shown that the physical
properties of one phase can be such that the
overall rate of the process is limited by that
occurring in one phase only. In this case the
interaction parameter vanishes and the resultant
expression for the transfer rate reduces to an
expression analogous to that given by Higbie [3]
or Danckwerts [4].

Previous theories when describing interphase
transfer postulated constant temperature or
concentration at the interface. The model
proposed in this paper does not contain this
arbitrary restriction. It can be seen in the
Appendix that for the nonequal surface renewal
times in the two phases the temperature at x = 0
is no longer constant, but is a function of time.
The time dependence of the interface temperature
is likely reason for the nonadditivity of resist-
ances.

The general difficulty experienced by many
investigators when attempting to correlate mass-
transfer results obtained for different systems
may well be associated with the fact that the
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possible effects of an interaction parameter had
not been taken into account.

It is of interest to note that liquid-liquid
extraction results using a wide variety of materials
were satisfactorily correlated by Lewis [5, 6]
who employed an expression which involved
three terms, one relating to one phase, the second
to the other, and the third being essentially an
interaction parameter.

This poses the question whether similar
correlations should not be necessary for the
accurate description of turbulent heat exchange
between two fluids, when the “individual
coefficients” are comparable in magnitude. It
would appear that only a carefully conducted
experimental investigation could give a definite
answer.
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APPENDIX

To solve

02T, 1 oT,

‘87(;27 = ;; *E?, x>0 (IA)
and

02T, 1 éT,

“'8—.;2‘ = ;-2— —g, x <0 (ZA)
with the following boundary conditions:

T,=9, atx =0, t>0 (3a)

oT, oT,

kléx‘ ~k25; atx =10, 1>0 (4a)
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and
T,— 7, att=0 (54)
T,=9,
P Y
iy e LA el v AR
define:
— Ky 74 iy T g
M_’km;_‘%('/l—‘Jﬂ (74)
and
1
VN (84)

T 2ty
Apply Laplace transforms to equations (1a) and
(2a):

a7 - T
‘d;; g1+~ 11 =0 (94)
and
dzT, x| 7
el S ) | Bad RN
I @3T, + M erfc VN + v 0 (10a)
where
g% = é: (11a)
Equations (3a) and (4A) transform to give:
T.=T, atx=0 (124)
and
dT, dT7,
kl a; = k2 a} at x — (13A)
The solution of equation (94) is given as:
Tl = C1 e v “I" C2 ent% + Al(x) (14A)

where C, and C, are constants and A4(x) is a
particular integral.

As T, is finite when x — oo, C, = 0; further-
more it can be shown that

Ayx) = i;. (154)
SUN
Therefore the solution of (94) is:
T, = Ce e 4 7 (16A)

5
Kqq
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The solution of (10A) is given as: T, ~ .?—2 L C,euse { M orfc x|
2
To=Ciew+ 4().  (172) VN
. . N/2 722 arf | X I q2‘/N
The particular integral A4,(x) can be determined — exp (¢3N/2) |} e~v% erfc VN 2
as follows:
x N
e (B9 v
_ 1 | x| T s Substitution of the boundary conditions con-
= Merfc ) — — . .
(D + g )(D — qp) vN Ky tained in equations (12A) and (13A)into equations
(184) (16A) and (21 ) facilitates evaluation of constants
C; and C;.
where D is the differential operator, Thus finally we have:
Resolving into partial fractions we have: C, =
M g/ N T, -7,
1 2 1 2
Ay(x) = — %e“qzzjﬂz M erfc \‘—/xﬁ‘ dx B [CXP (g3N]4) erfc 5 1];‘ »
k
+__1._eq2ZJ ‘qzxMerfc J__l_dx+ (f‘ L +E:Z;
2g, VN Kog3 (224)
(194) ¢, =
_ The integrals can be evaluated by integration M [exp (3N/4) exfe (h\/ N 1} T,
in parts. After some computation we have: q2 . 14
k1q1
T M 14
Af(x) = = — —{erfc =] exp (g3N/4) kaqs
P VN T~ Ty M
[t ot (m _avN Ty oty O
VN 2

Values of C; and C; thus obtained can be sub-
[x|  qvN stituted back into equations (16A) and (21A). To

T §eeerfe (\/ N T3 )]} (204)  form the inverse transform of the resultant
expression would require considerable manipula-

Thus the solution of equation (10A) is given as: tion and probably the use of contour integrals.

However, the expression giving the inverse transform of the flux: i.e.

o [u()..

can be evaluated without difficulty [7]. Thus we have:

— €xp (g3N/4) erfc ‘!2_ - 1 2 S
Tl = e~ 1% 12 q2 p B + 7 " (24A)
k1‘11 P
4+ 2=
d kyqs
an
T : M M gvVN T, — T,
1 DT " : T T,
( ox )z=0 Eﬁl [q% 9 — q2 g, exp (g3N/4) x erfe = —5- 4 o } (25A)
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Noting that M, N and g were defined in equations (7A), (84) and (11A) respectively, substituting
back these original values and finally forming the inverse transforms using tables, we obtain:

oT L hkay 1 C kg ,
0 () =50 70 e [
AL ! 1}
PO i) D e ——— 26
() Vo™ v 7 i) (268

It can be shown that, after some manipulation, equation (264) is identical to equation (23) in the
text.

Résumé—Cet article décrit un modele pour les échanges a 'interface de deux liquides agités séparément.
On considere que 'agitation est indépendante si les périodes de renouvellement des surfaces sont dif-
férentes pour les deux phases. On propose un schéme pour déterminer une valeur, moyenne en fonction
du temps, du flux qui traverse 'interface et on donne une solution analytique dans le cas trés simple ou
les temps de renouvellement des surfaces sont inégaux, par exemple quand le temps de renouvellement
d’une surface est deux fois celuide I’autre.

On montre que, méme pour ce cas simple, la résistance totale a I’échange ne peut plus se décrire par
“I'addition de deux termes linéaires contenant respectivement des paramétres se rapportant unique-
ment a chacune des phases™. La représentation schematique la plus simple serait: résistance totale =

résistance de I'une des phases + résistance dans I’autre phase -+ un paramétre d’interaction.

Zusammenfassung—Zur Beschreibung von Austauschvorgingen an der Trennfldche zweier unabhingig
voneinander geriihrten Flissigkeiten wird ein Modell vorgeschlagen. Die unabhingige Durchriihrung
soll unterschiedliche Perioden der Oberflichenerneuerung in den beiden Phasen bewirken. Nach einem
vorgeschlagenen Schema ist der zeitliche Mittelwert des Flusses quer zur Trennfldche zu bestimmen und
eine analytische Losung lisst sich fiir den einfachsten Fall ungleicher Oberflichenerneuerungszeit
erhalten, d.h. wenn die Oberflichenerneuerungszeit in der einen Phase zweimal so gross ist wie in der
anderen.

Es wird gezeigt, dass selbst fir diesen einfachen Fall der Gesamtwiderstand des Austausches nicht
mehr als “zusammengesetzt aus zwei linear additiven Ausdriicken, von denen jeder nur die auf eine
Phase bezogenen Parameter enthilt” beschrieben werdenkann. Dieeinfachste schematische Wiedergabe
wire so: Gesamtwiderstand = Widerstand in einer Phase -+ Widerstand in der anderen Phase =

Wechselwirkungsparameter.

AdnoramMa-—IIpenosxkesa Mojens ONMCAHUA NePEHOCA Yepes NMOBEPXHOCTb pasjena ABYX
OTeNbHO mepeMewmBaeMuIX unKocreit. [Ipexmonaranock, 4To B pesyapTaTe He3aBHCHMOTO
nepeMelBaHusA MOJMYYAOTCA PA3INYHbEe HePHOIBl BOCCTAHOBIGHHA MOBEPXHOCTH B JIBYX
danax. IIpeni1omena cxeMa pacyéra CpefHero 3Ha9€HUA BPCMEHN AJISL IOTOKA, IPOXOAAIETO
yepes TOBEPXHOCTh Pasfela U MOAydYeHO aHANUTHIECKOe PelleHHe s npocreitulero caydas
HeOITHAKOBHIX EPHOI0B BPeMeHH BOCCTAHOBIIEHMA MOBEPXHOCTH, T.€. KOI'la BOCCTAHOBIEHNE
HIOBEPXHOCTH B oxHOii dase B za pasa Hogblue YeM B Jpyroii.

Ilokasano, uTo make A 3TOTO IPOCTOTO CJy4Yad, TOJHOE CONPOTHBIEHNE MEpenocy
Helb3st 60JIee OLUMCHBATE KAK «COCTOANSe W3 IBYX AJIUTHBHBIX YJIeHOB, KaKBII U3 KOTOPHIX
COTEPKHUT MAPAMETPHI, OTHOCALIMECA TOJBKO K OFHON M3 dasy. [IpocTelfilunmM CXeMaTHIECKIM
UpEJCTABNEHeM FARIAETCA: 110IHOE COMPOTHBIEHHe = CONPOTUBJIeHHI0 B OjHOl (ase -+

CONPOTHBIIEHNE B NPYroit dase -+ mapamerp B3aNMOTEHCTRHA.



